! Forum —
Speed difference between Basic 1.0 and 1.1

compiled from newsgroups <comp.sys.oric> by André C.

Fabrice F.: Hello Anders, I’ve just read your question in BENCHMARK 1 (new)
the Ceo-Mag about a 50% speed difference between Basic 100 REM TEST 1

1.0 (Oric-1) and 1.1 (Atmos): You were wondering ifit 110 PRINT «START»
was an artefact of Euphoric or something else... Well, 120 FOR K=1 TO 1000
don’t worry, it’s not an artificial behaviour of Euphoric, 130 NEXT K

Basic 1.1 was really optimised in some places, compared 500 PRINT «STOP»

to 1.0 (which was really close to the original Microsoft 550 END

Basic-65... not so close as the direct port of Basic-65t0 —— —

the Microtan-65, but still very close... :-). BENCHMARK 2

Anders C.: It’s always interesting to find out that 120 XK=0

newsgroup messages find their way into magazines... 130 K=K+1

[Basic 1.1 versus Basic 1.0] Interesting. Back inthe 190 IF K<1000 THEN GOTO 130
80’ties, | cannot recall reading anywhere inthe reviews ———————

that Basic seemed to have been speeded up; only bug BENCHMARK 3

fixed. BYTE had in 1977 a series of simple 140 A=K/K*K+K-K

benchmarks, which sometimes were reused to givea ————

rough estimate of Basic speed. It might be worthwhile BENCHMARK 4

to run those on the two Oric models and compare the 140 A=K/2*3+4-5

results with other Basics if it has not been done before. —————

Steve M.: | did run some benchmark tests on the Atmos
and found that it was not much faster than the Oric-1.
The Orics are painfully slow as compared to other
machines, but does beat the Speccy on more complicated
functions ;0) Some of the basic speed was altered by that
poke that effects the number of times the keyboard is
scanned IIRC. The Atmos keyboard repeat and cursor
flash is quicker. Under Sedoric, this is quicker again.

Anders: | just run through the eight benchmarks, but | gEncaMARK 7

cannot claim my results to be very reliable: 1) They 157 v (1) =a

were run in Euphoric (Atmos mode), not a real Oric

computer. 2) The host machine is a 200 MHz Windows gpcuMark 8 (new)
98; not sure if itis enough. 3) Since I couldn’tlocatea 1,50 rEM TEST 8
simple timer, I used my C64 as a timer. However,below 117 prRINT «START>
are the results compared to premeasured values: 120 K=0

The simple loops seem to take an awful lot of time, 130 K=K+1

probably an emulator artefact? On the other hand, the 140 A=K"2

trigonometric test (#8) is reasonably fast and lifts the 150 B=LOG (K)

machine a number of positions compared to the others. 160 C=SIN(K)

Here are the incremental benchmark listings. The listings 170 IF K<1000 THEN GOTO 130
marked (new) obviously should be written from scratch, 180 PRINT «STOP»

otherwise only add or change the mentioned lines. 190 END

BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM8 Avg

BENCHMARK 5
150 GOSUB 600
600 RETURN

BENCHMARK 6

125 DIM M(5)

155 FOR L=1 TO 5
160 NEXT L

Oric est. 1.8 15.7 25.5 27.5 33.0 45.5 68.5 140 44.7
BBC (B ?) 0.6 3.2 8.1 8.8 9.9 14.3 21.9 48 14.3
Acorn Atom 0.5 5.1 9.5 10.8 13.9 19.1 31.1 92 22.8
VIC-20 1.4 8.3 15.5 17.1 18.3 27.2 42.7 99 28.7
Apple II 1.3 8.5 16.0 17.8 19.1 28.6 44.8 107 30.4
Dragon 32 1.6 10.2 19.7 21.6 23.3 34.3 50.0 129 36.2
SVI-328 1.6 5.4 17.9 19.6 20.6 30.7 42.2 236 46.7
zX81 (fast) 4.5 6.9 16.4 15.8 18.6 49.7 68.5 229 51.2
ZX Spectrum 4.8 8.7 21.1 20.4 24.0 55.3 80.7 253 58.5
Atari 600XL 2.2 7.2 19.1 22.8 25.8 37.6 58.3 412 73.1
TI-99/4A 2.9 8.8 22.8 24.5 26.1 61.6 84.4 382 76.6

17

Fabrice: Here is the timer:
10 T1=DEEK (#276)

200 T2=DEEK(#276) :IF T1<T2 THEN T1=T1+65536
210 PRINT (T1-T2)/100

The emulator counts every cycle and synchronises
either with the sound DMA (if you have a SoundBlaster
card) or with the host clock. Just try this: WAIT 6000
with your clock in your hand. If it takes 1 minute, the
emulator is perfectly synchronized...

Anders: Cool. I was considering something like that
(or rather making calls directly to the ROM according
to the disassembly | found). After verifying the WAIT
statement takes exactly 60 seconds in the emulator, |
rerun the second benchmark and got the same results;
15.6 seconds for Oric Atmos or 17.3 seconds for Oric-
1 (compared to VICE xvic: 8.0 seconds, x64: 9.6
seconds). It looks like the Oric Basic is one of the
slowest ever when it comes to handling an empty
increase-and-compare loop. Was there any alternative
Basics for Oric, i.e. the BBC Basic which | know floats
around even in Z80 versions? | don’t know if the
hardware on Acorn’s BBC allowed faster execution
(afterallitisa 1l or 2 MHz 6502 too), but it seems silly
that two 6502-based systems would differ that much
in execution speed — imagine Acorn using a marketing
slogan «60% faster than Oric».

Fabrice: Right, it comes partly from the fact all
computations are done using floating point values (ol’
microsoft floating point format: 5 bytes floating point
values, i.e. a 4-bytes-mantissa). Using integer variables
(appending a ‘%’ sign to the variable name) is even
worse: for each computation, they are first converted
to floating point, then the computation is done using
floating points, and the result finally converted back
to integer. Also, about 20% of the CPU time is
consumed by the interrupt routine that polls the
keyboard... Oric Basic is not fast, that is a fact. :-(
Acorn’s Basic is sure a much better Basic, it evolved
during several years to reach a great level... (in comparison,
Oric Basic only went through two versions : A buggy
1.0 release, and a somewhat debugged and slightly
improved 1.1 release...). To be honest, when the
company crossed the channel, a new compiled Basic
was developed in France, it is mostly compatible at
the source level. So, if you try your benchmarks on
the Telestrat, you will get much better results... And if
you replace your loop with something like:

110 COUNT 1000

190 UNCOUNT
you will find it damn’ fast :-) PS Do the VIC and the
C64 run at the same clock frequency ?

Anders: [floating point & integer variables] Yep, the
same thing happens in Commaodore Basic (derived from
a one-time licensed copy of Microsoft Basic, which
M$ later regretted as they could have received lots more
license money if they had been paid per user). However,
it takes less space to store the integer variables.
[keyboard] GlIbl. Shouldn’t the VIA do all the keyboard
decoding? [Acorn’s Basic] Well, Atom Basic and

Electron/BBC Basic look very much different on the
Ul (but might share code inside). All the benchmarks
were done in 1983/84, so it is not like comparing an
optimised 2003 Basic with something written twenty
years ago. [VIC and the C64 clock frequency] Almost
the same; the more advanced C64 traditionally has an
effective frequency of 0.98 MHz (PAL) when screen is
lit while the VIC is about 1.01 MHz. The numbers may
differ a little in NTSC land. If the screen is closed, the
C64 reaches 8.9 seconds in VICE, which is not quite the
VIC speed but a reasonable speed-up.

Answer from Fabrice: [Keyboard] Well, due to the way
the Oric was designed, one port of the VIA is shared
by the printer and by the sound generator (PSG)... This
is one of the most dubious design of the Oric: the PSG
is not memory-mapped, you access it through the VIA,
with lots of operations in order to handle the control
lines of the PSG, and then the 1/0 port of the PSG is in
turn connected to the keyboard columns... Each time
you want to access a keyboard column, you spend a
lot of clock cycles... [Acorn’s Basic] | was referring to
the latest 6502 versions of Acorn Basic, that has both
high-level structures (control structures, procedures,
etc.) and in-line assembly... Yet, twenty years ago, BBC
Basic was already quite recognised...

Againfrom Anders C.: [PSG] Yes, I’ve noticed this before
when | was considering how much work it would be to
port one of my music players to Oric. [keyboard] And
me who thought the wiring together of joystick port 1
and keyboard was bad enough on the C64.

Answer from Steve: [alternative Basics for Oric] .../...
There were one or two Basic toolkits around that added some
of those missing commands Programs like Super Extender
and Basic Plus, but I’m not aware of complete rewrites except
perhaps for Sedoric? The Sedoric Basic has added commands
and runs a little faster but I am not sure how much is
altered. I have BBC Basic for the Einstein computer, which
is both fun and frustrating because there are a number of
commands that don’t work. Screen commands etc are so
different that BBC programs will not run on an Einstein
with BBC Basic, which is disappointing.

Question from Fabrice: [Sedoric Basic] Actually, it
runs significantly slower... The interpreter routine that
fetches consecutive bytes is extended in order to cope
with file names used as commands and to differentiate
those file names with assignment variables, and this
slows down the whole interpretation process... | am
considering extending my Evolution Basic to a semi-
compiled form (do not know if the ‘semi’ prefix has
any English meaning :-) This semi-compilation would
mainly transform sequential accesses in direct accesses
(e.g. variable access, line access in a GOTO or GOSUB)
and still keep a very compact tokenised form (so, still
interpreted but about as fast as Forth)...

From Ventzislav T. : [keyboard] You can speed up the
Basic interpreter by changing the time between 2
keyboard handling interrupts: DOKE #306,65535 To
set the value back to normal: DOKE #306,10000 For
timing right on the Oric you can use the Oric Real
time clock, which is somewhere else in this newsgroup

18

archive. To my knowledge, the VIC’s main CPU is
clocked at 1.01 MHz, while the C64’s CPU is clocked
at 985 KHz.

Again from Fabrice: I’ve re-run your tests on the
Microtan-65, Oric-1 and Atmos... Here they are for
your collection (see below). You can see that the results
are the same you already provided for the Atmos (I
have used timers to have a more precise timing, this
required additional variables, so | have been cautious
to initialise variables in the same order you used them,
and to provide the same amount of lines for the lookup
occurring in GOTOs and GOSUBSs). The only
difference with your benchmarking is with BMS8,
because I’ve replaced LOG by LN on the Oric-1 and
Atmos (LOG is the decimal logarithm, this requires
an additional division :-) Except that, | have strictly
followed your syntax, even if FOR loops go faster if
you don’t precise the index variable in the NEXT
statement... But, I’'m not computing an average,
because your average is a «double-strange» average...
:-) | prefer to present your individual tests in this way:
BM1 measures the FOR loop

BM2 measures a simple incrementation and loop
BM3-BM2 measures standard arithmetics
BM4-BM3 roughly measures the cost of converting
decimal numbers to float binaries (Sinclair machines
have a negative value here, because they store the
floating point value in the code)

BM5-BM4 measures GOSUBs

BM6-BM5 measures small FOR loops (i.e. the
initialisation is very costly)

BM7-BM6 measures array access

BM8-BM2 measures transcendental functions

So, actually, BM7 alone is already a sort of average of
BM2, BM3-BM2, BM4-BM3, BM5-BM4, BM6-BM5
and BM7-BM6... Anyway, | was interested in the
Microtan-65 timings, because it really represents the
original Microsoft Basic 65, from which the Oric
Basics are derived. The Microtan-65 runs at 750 kHz
only, below I’m providing timings of an hypothetic 1
MHz Microtan to compare with the Oric Basics:

Comment: the inner interpreter loop of the Oric-1
introduces some new features, not found on the original
Basic-65: 1) New command separators have been
introduced (ELSE and the quote). 2) Ctrl-C detection
between two executed commands. 3) Ability to
CONTinue the program after a Ctrl-C (the TXTPTR is
frequently saved). 4) Tests for TRACEd execution
(TRON, TROFF). 5) And of course also, the VIA timer
interrupt that does a lot of handling, including keyboard
polling... I’m not sure about the better result of the Atmos,
I think I comes partly from the fact that the mantissa-
shifting-routines use the ROR and ROL instructions which
were not used before (the first prototypes of 6502 did not
have these instructions, so Microsoft didn’t use them in
its Basic65, and Oric did not notice that until the Atmos),
and partly because of slightly faster interrupt routines...

BM2: 1MHz Microtan 9.6
Oric-1 17.1
Atmos 15.2
That is a complete non-sense for me! This is what you
noticed immediately: This simple loop is incredibly
slow on the Orics! | have to dig into this, | cannot

understand!

BM3-BM2: 1 MHz Microtan 8.9
Oric-1 11.9
Atmos 10.2

Ok, not very good, those VIA interrupts are to blame...

BM4-BM3: 1 MHz Microtan 2.3
Oric-1 2.4
Atmos 2

Yeap, | quite remember that the ASCII to float routine
has been optimised a little...

BM5-BM4: 1 MHz Microtan 1.4
Oric-1 6.6
Atmos 5.6

Damned! Again an not-understandable result! Why are
these GOSUBs so slow?

BM1 : 1MHz Microtan 1.4 BM6-BM5 1 MHz Microtan 10.2
Atmos 16 AtmOS 126
BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM8 Avg
BBC (B ?) 0.6 3.2 8.1 8.8 9.9 14.3 21.9 48 14.3
Acorn Atom 0.5 5.1 9.5 10.8 13.9 19.1 31.1 92 22.8
VIC-20 1.4 8.3 15.5 17.1 18.3 27.2 42.7 99 28.7
Apple IT 1.3 8.5 16.0 17.8 19.1 28.6 44.8 107 30.4
Dragon 32 1.6 10.2 19.7 21.6 23.3 34.3 50.0 129 36.2
SVI-328 1.6 5.4 17.9 19.6 20.6 30.7 42.2 236 46.7
ZX81 (fast) 4.5 6.9 16.4 15.8 18.6 49.7 68.5 229 51.2
ZX Spectrum 4.8 8.7 21.1 20.4 24.0 55.3 80.7 253 58.5
Atari 600XL 2.2 7.2 19.1 22.8 25.8 37.6 58.3 412 73.1
TI-99/4A 2.9 8.8 22.8 24.5 26.1 ©61.6 84 .4 382 76 .6
Microtané5s 1.9 12.8 24.7 27.8 29.6 43.2 68.9 243.0
Oric-1 1.8 17.1 29.0 31.4 38.0 51.8 77.8 230.1
Atmos 1.6 15.2 25.4 27.4 33.0 45.6 68.5 136.5

19

Ok, still the same factor...

BM7-BM6: 1 MHz Microtan 19.3
Oric-1 26
Atmos 22.9

Here we go again...

BM8-BM2: 1 MHz Microtan 172.6
Oric-1 152.3
Atmos 68.0

Huh?! What is that?

Are they computing the same thing? This is what you
spotted too... | am sure they have cheated with the
precision (fewer terms in the limited development) ;-)

Anders: [«double-strange» average] Yep, | thought it
was killing some of the value from the benchmark, but
my source already had performed the averages on the
other machines. Maybe because it is easier to compare
one value than eight, even if that one value does not
represent anything useful.

[BM2 incredibly slow on the Orics] Maybe all sorts of
calculation tests are scanned through somehow? At least it is
a good example of a programming style to avoid if one can.
[BM5-BM4 (GOSUB added] Ah, you are making
incrementary comparisons too. In that case, it might
be interesting that ZX Spectrum as the second worst
adds 3.6 seconds between these two tests.
[BM8-BM2] A few comparisons: BBC 44.8, VIC-2090.7,
ZX Spectrum 244.3. The article said trigonometric
algorithms tend to be dead slow, so it might have been
vast improvements in Oric Basic 1.1 which was out a
little later than the original benchmarks were done.

Hm. I might try these benchmarks on Plus/4 and C128
which both have other Basics that VIC-20/C64. Since
the C128 also runs in 2 MHz, in theory it should beat
both the old BBC and the original IBM PC (which I
omitted from the benchmark stats together with some
other odd computers :-).

Again from Fabrice: [easier to compare one value than
eight] Yeap, that is always the problem with
benchmarks... Does a small benchmark mean anything?
People tend to prefer to compare machines on full-
size applications nowadays...
[BM2] Ah, ok, I see... The original Microsoft Basic
only accepted a line number after a GOTO... The Oric
Basic accepts any expression after a GOTO, e.qg.
GOTO 100+N*10 So, the line number in the
benchmark is first converted to float, then back to an
integer... Sure, nobody would write this on the Oric.
We have a nice REPEAT...UNTIL structure, so if BM2
was measured on 120 REPEAT

130 K=K+1

190 UNTIL K=1000

BM1 BM2 BM3
Microtané5s 1.9 12.8 24.7
Oric-1 1.8 17.1 29.0
Atmos 1.6 15.2 25.4
Telestrat 0.5 3.6 11.4

Then the BM2 result would fall to 11.5 for the Oric-1,
and 10.4 for the Atmos.

[BM5-BM4 GOSUB added] Yes, | remember my ZX81
also allowed these computed GOTO/GOSUBS, because
they lacked a ON...GOTO/GOSUB structure. But the
Oric does have this ON...GOTO/GOSUB, so maybe
Oric only added the computed GOTO/GOSUB to gain
some room in the ROM, by calling the standard
expression evaluator...

[BM8-BM2] Oups, sorry, | substracted BM8-BM7
instead of BM8-BM2... The above should read:

BM8-BM2: 1 MHz Microtan 221.2
Oric-1 213.0
Atmos 121.3

I have checked, the code of ”~, LN (LOG on the
Microtan) and SIN are exactly the same on these 3
machines. What has changed on the Atmos is the use
of ROR and ROL instructions when shifting a mantissa
(the original Microsoft Basic did not use them), and
these shiftings are mostly responsible for the duration
of floating-point additions (which in turn are largely used
in the polynomials of these transcendental functions).

Again from Anders: [The Oric Basic accepts any
expression after a GOTO] So does Sinclair Basic, but
not Commodore Basic. Not sure about the other (faster)
Basics. Sometimes this could be resolved by ON
GOTO, but it requires a well lined (eh) program.

Again from Fabrice: Ah, I forgot to run these
benchmarks on the Telestrat, here they are below:

Telestrat’s Hyper-Basic is a Basic compiler, this is why
the first loop is this fast (there’s even a COUNT 1000:
... - UNCOUNT structure that is compiled in a few
machine code instructions, but | have not used it here).
Of course, GOTOs and GOSUBs cost nearly nothing,
but curiously, it seems that literals are not stored in
binary form (BM4)... Anyway, one problem with
Telestrat’s Hyper-Basic is that the code is much less
compact than the interpreted one... So, I'm
experimenting a hybrid interpreter, with compiled
address variables (not need to look them up), and
literals in binary form... For now, | have BM2 on the
Atmos running in 4.9s (instead of 15.2). | am still
amazed at the results of the Acorn computers... surely
they only use integers in FOR loops, don’t they?

Anders: Telestrat is what, a 2 MHz 6502 or something?
[Acorn & integers in FOR loops] | do not know what
they are doing right, but BBC emus should be easy to get
and try if you don’t have the real thing. Worth noticing is
that even the original IBM PC (at whatever clock
frequency it used) with Rom Basic was slower than BBC.

Fabrice: Nope, 1 MHz only :-) But the bundled Basic
is a compiler...

BM4 BM5 BM6 BM7 BMS8
27.8 29.6 43.2 68.9 243.0
31.4 38.0 51.8 77.8 230.1
27.4 33.0 45.6 68.5 136.5
13.2 13.4 18.7 26.3 109.6

20

