! Atelier —
Ula hacking : Double buffering of video Ram

compiled from <comp.sys.oric> by André C.

From Mickaél P.:

Here is a crazy project that came out while talking
during the January CEO meeting in Paris. One of the
reasons that makes it hard to do clean animations and
games on the Oric, is partly due to the fact that we
didn’t get vertical refresh synchronisation, and also to
the fact that we didn’t get any way to perform «double
buffering»: drawing somewhere in memory while the
video chip display something else.

The vertical refresh problem has been solved, using
the «RGB synch into tape in» trick. But well, it’s not
of real use because we can’t display anything
interesting. Now, if we were able to dynamically
change the screen address, that synchro will come in
handy to help us doing the switch at the right timing :)
So, well, the question is: how can we force the Ula to
read from somewhere else than $A000 or $BB80 ?

If you have a manual that shows the Oric memory map
of both 48k and 16k machines, you would probably
have noticed that the address of screen memory is
different on these two types of machines. Considering
that the Ula is probably the same in both machines, we
can safely say (I hope, please tell me if I’m wrong),
that the different addressing must be done using some
memory addressing trick.

The important addresses to consider are: (48k/16k)
- TEXT STD CHARSET: $B400 / $3400

- TEXT ALT CHARSET: $B800 / $3800

- TEXT VIDEO MEMORY: $BB80 / $ 3B80

- HIRES STD CHARSET: $9800 / $1800

- HIRES ALT CHARSET: $9C00 / $1C00

- HIRES VIDEO MEMORY: $A000 / $2000

In binary, we have the following values:

1010000000000000 = $A000
0010000000000000 = $2000

In short, the only difference between accessing the 48k
address and the 16k address is the status of the last
significant bit of the address. Starting from this
observation, we got the idea that perhaps it was possible
to use something like PB5 to control a small switch
that would dynamically perform this 0/1 switch, and
thus force the Ula to read data from the top part of
bottom part of memory, effectively acting as an
hardware double buffering :)

Wanting to start experimenting, we simply removed
an Ula, put the pin number 30 (address bus 15th bit) in
top position, and switched on the machine. It freezed,
but well, the display was still there.

I suppose we would have been lucky if it has worked,
because when we started again looking to the Oric

schematics, the relationship between how Ram address/
data is accessed by the 6502 and Ula is far from being
obvious. It looks like there are not 16 lines for selecting
Ram, so there must be some black magic here and there.
Perhaps simply acting on the bank selection would do it?

So | ask to anyone here that has a thorough knowledge
of the Oric internal if this kind of address switching is
doable, and if yes, what it would require hardware
wise :) Thanks for reading!

Answer from Jani T.:

[How can we force the Ula to read from somewhere
else than $A000 or $BB80?] Really, there isn’t way.. =)

[The different addressing must be done using some
memory addressing trick] Actually... It might be so
that in 16k machine all $2000 addresses are really
mirrored in $A000, and this is done somewhere
between Ula and RAM.

[Perhaps simply acting on the bank selection would
do it?] Greatly depends...

From John W.;

[Drawing somewhere in memory while the video chip
display something else] Mad idea of the month: It may
be possible to synchronise using 100% software...
Using assembler, If we read a timer, clock, or other
regular synchronisation source, then loop and read it
again, and monitor the time between the last read, and
log this in a buffer, we should see some side effect of
the screen update in our timings as a non-uniform interval.
We then try various offsets from this glitch as potential
screen update points, until we get a smooth update.

If that works, then we write code to quickly find the
glitch, just before we update. In high performance code,
we would need to balance all the branch paths with
NOPs, and could count the cycles, predicting the next
Vrefresh and avoid repeated resyncs, do a resync
occasionally, etc. Don’t the VIAs have timers in them?
I seem to remember something like this when | last
programmed an Oric nearly 10 years ago! Even if the
Orics timers are too hit and miss, we could develop
clock divider/counter hardware, read this in software,
find a glitch somewhere, then try and correlate this
with something else. Connect the mic to the tape out,
and try reading noise on the mic socket, anything. A
refresh is a big world changing event in our little Oric...

If this worked, then semi-automatic tools could be used
to time instruction streams, and pad them out with
NOPs, to minimise resyncs.

Answer from André M.:

[In high performance code, we would need to balance
all the branch paths with NOPs] Not actual NOPs

52

though, as NOP takes two cycles and the difference
between a branch taken and a branch not taken is one
cycle. There’s also the complication that, if | recall
correctly, branches take one more cycle if the target
location is on a different page.

[Don’t the VIAs have timers in them?] This might be
the best approach. Since everything runs off the same
clock, programming timer 1 to trigger an IRQ every
19200 cycles should lock you to the half-frame
frequency. I haven’t actually tried it but I think Mickaél
has. The remaining problem is that you have to adjust
the phase manually.

[Semi-automatic tools could be used to time instruction
streams, and pad them out with NOPs, to minimise
resyncs] The idea has crossed my mind too, but it
smells like a difficult task, especially if it’s to be done
in a reasonable amount of time (as opposed to blindly
tracing all possible code paths).

Answer from John:

[The remaining problem is that you have to adjust the
phase manually] Fantastic!

[The idea has crossed my mind too, but it smells like a
difficult task, especially if it’s to be done in a reasonable
amount of time (as opposed to blindly tracing all
possible code paths)] | was thinking along the lines
(for new code) of structuring the code into streams,
and using an ICE/Logic analyser to check dynamic
branch cost, an average cost would do... Even inserting
timer reads to work out average branch cost would be
OK for new code. For existing apps, the ICE would be
invaluable, and just the main paths are worth syncing...
The plan could be to use an ICE made from a 6502
core running in a gate array 8-)All we need to get is a
dynamic address trace with timings. Or perhaps we
could generate interrupts and sample the PC in s/w to
discover the hot loops... We then patch these to call a
stub, and balance the segment with the stub. The better
and cheaper our re-sync code is, the less work we have
to do...

Answer from Fabrice F.:

[We didn’t get any way to perform «double buffering»:
drawing somewhere in memory while the video chip
display something else] Ok, here is a new idea for a
double screen that could be much more easy to
implement... :-) On those Oric boards with eight 4164
chips, it should be easy to replace these chips with
41256 ones (yeap, 256K x1 bits). The pinout is
identical, except the additional A8 row/column line (pin
#1). So, the mod just consists in cutting the tracks
coming to pins #1, and tying all these pins to PB5 or
PB6 for example. This way, you have access to two
banks of 64 KB.

This is not very interesting for all double buffer
techniques because you only have access to one bank
at atime, but hey, this still means 128KB Ram on your
Oric... :-) Yeap, 128KB is wasted: trying to access the
full 256KB raises the same timing problems than the
ones we discussed earlier... Beware that switching
between two 64KB banks is not easy with the 6502 :

you must do the swapping in the Rom, and you lose
the current stack, page zero and so on... Is this still
interesting?

I’m going to try it... it should work if the Dram refresh
only needs to be done on A0-A7, this is surely true if
the grid is rectangular. Ok, no doubt it works :-) I just
need to have 41256 chips... Damn’d! Mike was selling
those chips, and | haven’t had this idea earlier! :-(

Phew, | can see that nobody bidded... Are you going to
retry eBay, Mike, or may | buy your collection of Dram
chips for £9?

Answer from Mickaél:

[Cutting the tracks coming to pins #1, and tying all
these pins to PB5 or PB6 for example] Easier? Well, it
means unsoldering all the original Rams, since they
are not socketed.

[You must do the swapping in the Rom, and you lose
the current stack, page zero and so on...] Not very
easy to deal with that. Without modifying the Rom, I
don’t really see how one can perform the transfer /
duplication of code that allows you to switch bank
while still executing code. | suppose that in this scheme,
even the overlay Ram is duplicated? | try to think of a
way, but hum, does not seem straightforward at all :)

Answer from Fabrice:

[Unsoldering all the original Rams, since they are not
socketed] Yeap, easier for those of us who already have
all their Ram chips socketed, and it’s also a simpler
design... ;-)

[1 suppose that in this scheme, even the overlay Ram
is duplicated?] Absolutely right, the first time you
switch to the second 64K bank, there’s nothing in Ram
you can rely on... So you must at least have a routine
in Rom that moves data from one bank to the other... It
would be practical to also have a routine in Rom that
executes a routine in the other bank...

[I try to think of a way, but hum, does not seem
straightforward at all] Yeap, the only thing that is
retained when you switch from one bank to the other
is the Cpu registers, and the /O chips registers...

From Mike B.:

[Are you going to retry eBay, Mike, or may | buy your
collection of Dram chips for £97] If you have access
to PayPal, drop me an Email and we can sort that out.

From Jani T.:

[1t should work if the DRAM refresh only needs to be
done on AOQ-A7, this is surely true if the grid is
rectangular] Actually most Dram chips refresh them
selves row-by-row basis, so this is usually not a
problem. Of course you would need to deal with
duplicating memory but hey, how about leaving bottom
(#0000-#9FFF) 32k untouched and just bank switch
upper 32k? That could even work. Of course this still
leaves that access problem, now what if CPU could
access different bank than Ula.

[Damn’d! Mike was selling those chips, and | havent

had this idea earlier!] | might have some 41256 chips
around here... Yes, | have darn old 286 mobo that is

53

loaded with 41256A-12 chips =) How many you need?
Answer from Fabrice:

[How about leaving bottom (#0000-#9FFF) 32k
untouched and just bank switch upper 32k?] That’s a
good idea: 96 KB Ram only, so switching from one
bank to the other won’t be a problem. Pins #1 of the
41256s would then be driven by something like PB5
AND (A15 OR NOT PHI2). Thus the Ula cycles would
always take place in the bank specified by PB5, whilst
the Cpu cycles would take place in the bank specified
by PB5 AND A15...

[This still leaves that access problem, now what if Cpu
could access different bank than Ula] I had this idea too,
as an improvement over the first scheme... Using two
different bits to control which bank the Cpu has access
to, and which bank the Ula has access to. Pins #1 of the
41256s would then be driven by something like (PB5
AND A15 AND PHI2) OR (PB6 AND NOT PHI2).

[How many you need?] Ha, | sometimes act quickly :-)
I’ve already sent a mail to Mike to buy his chips.
Thanks for the kind offer, though. You will surely need
these chips too!

Answer from Jani:

[That’s a good idea .../... something like (PB5 AND
A15 AND PHI2) OR (PB6 AND NOT PHI2)] Actually
this is really getting close to solution used in C64 bank
switching. Now it could be used so that highest address
(because it’s under ROM anyway) could be used to
control full 8 bit banking, with 3 pieces of 3-to-8
decoders you could point 20 banks, meaning total of
640 Kbytes of Ram.. That should be enough for
anybody as Mr. Gates has stated =) Actually you would
end up with 640 + 32k lower RAM+ 16kb ROM...
Hope that my calculations were right, but this is feasible
pretty easily - necessary? | doubt... For a really tight
operation, you could tweak bank switching starting
from #400 (from up that there isn’t any really important
stuff...), so you could get almost 128 Kb of free Ram
to mess with...

[You will surely need these chips too!] Actually | have
at least 40 of them, and what I really want to try is to
use old 256kB SIMMs that | have loads, of course
SIMM needs a bit more soldering but would be easier
to obtain...

Answer from Fabrice:

[Really, there isn’t way] Maybe we can lure the Ula in
thinking it is still reading at $A000 or $BB80, but have
an external memory mapping...

[It might be so that in 16k machine all $2000 addresses
are really mirrored in $A000, and this is done
somewhere between Ula and Ram] Right, you can still
consider the screen to be in $A000 or $BB80 on a 16K
machine. If you have an issue 3 board or earlier, with
8 Ram chips (Steve has a nice collection of pictures on
<http://www.48katmos.freeuk.com/oricl.htm>, you
might have noticed LK1 has two possible settings (b-
a for 16K Ram, a-c for 64K), and maybe this is this
LK1 that gave you the idea of switching between a

16K Oric and a 64K Oric: forget about it... | guess that
eight 4116 chips (or more exactly eight 5V-only
flavours of these chips) were intended to be used on
such boards in order to have a 16KB Oric : those chips
only have 7 address lines instead of 8 address lines for
the 4164 chips that are used on 64KB Orics. Remember
that we are talking of Drams: the 16-bit address is split
in two before being sent to the chips. When the memory
cycle is initiated by the Ula (in order to read the video
memory or the character sets), the Ula successively
sends the two parts of the address (these are called the
‘Row’ part and the ‘Column’ part: think of the Dram
as a 2D grid).

The Ula doesn’t know if you have 16K or 64K, so it
always uses 8 address lines for the row and the column
specification. Since the 4116 chip does not have the
8th address lines, the value of this 8th address line is
lost, both for the row and the column number... You
would effectively have 16 Ko with those chips
installed, but with a very strange memory map (A7 having
no effect, each block of 128 addresses would be
duplicated). LK1 is a very strange attempt to have this
memory reorganized, so strange in fact that it doesn’t
work...

[I ask to anyone here that has a thorough knowledge
of the Oric internal if this kind of address switching is
doable, and if yes, what it would require hardware
wise] So, you are wondering what would happen if
you changed the LK1 setting during execution ? (ouch
:-) First, I think it’s not that easy to do (you would
need to control a very fast switch with 2 positions).

Supposing you manage to do it, you will come up with
your data completely reorganized in memory You
might love it for some screen effects, but all your code
and your data will also be reorganized...

The effect is not easy to depict... The Ula controls the
two LS257 multiplexers that allow to either send AO-
A7 from the Cpu address bus or an internal Ula-
generated 8 bit address (including the A8-Al15 Cpu
address lines that the Ula has access to). At least this
what happens in the normal a-c setting, when you
switch to the a-b setting, you have pin #11 of I1C20
(LS257) fed by A7 (from the Cpu address bus), instead
of A6 from the Ula.

| find this extremely strange... In fact, | think that it is
an error on the circuit board: pin b of LK1 is connected
to the A7 line coming from the Cpu. IMHO, this is no-
sense. | mean, this LK1 must be a reminder of older
prototypes and can only be used with the a-c setting.

Mhhh... let’s take an example of what happens with
LK1’s b-a setting. Let’s say that you want to access
address BB80 with the Cpu... Row part of the address
is sent first, so the Ula controls the multiplexers in
order to let AO-A7 flow in. Then, the column part of
the address is sent: the Ula already has the high part of
the address (A8-A15) in it, and it forwards it to the
multiplexers, and it controls the multiplexers so that
the address coming from the Ula is the one that reaches
the Ram. But, we said that A7 from the Cpu address
bus replaces A6 from the Ula when LK1 in is the a-b

54

setting, so instead of receiving Al4, the Ram receives
A7. That is to say: address FB8O0, in overlay Ram (ok,
you have found a new way to access overlay Ram
without a Microdisc or such external extension ;-)

Now, what happens when the Ula wants to display the
screen and accesses video memory location BB80? The
multiplexers are always controlled such that the Ram
address lines receive what the Ula sends to them, except
for bit 6 of each part (row, column) of the address
(instead, A7 from the Cpu is inserted). So, the Ula reads
an undeterministic address instead! Suppose now that
you agree with me and consider that the b pin of LK1
is wrongly connected to A7 from the Cpu, and thus
you cut this connexion and instead you connect b to
A7 from the Ula (pin #39) (this doesn’t make a lot of
sense either, but maybe this is what the designers had
in mind?) Now you have a defined address: FBCO.
Quite weird, though...

So, I don’t see how you could use this for some sort of
memory-map reorganisation...

Mhhh... I have been a bit long, and | don’t really bring
hope... Let’s think again at what you want to achieve:
having two memory screens, one in $3B80 and the
second in $BB80. And a hardware mod that forces the
Ula to read one of these two screens...

Mhhhhh.... (oops, | sound like a cow... ;-) To achieve
this, | think we shall have a sort of switch inserted
between Ula’s pin 39 (A7) and 1C20’s pin #14. The
aim is to replace the Ula’s A7 output with a 0 only
when the Ula sends the column address part (i.e. A8-
A15), i.e. when CAS is activated. Of course, you must
be able to control this switch in software, let’s say with
PB5 for example. Let’s imagine that you insert a new
LS257 (only one of the 4 multiplexer will be used):
the multiplexer has two inputs (Input A: A7 from the
Ula, Input B: ground), its output is sent to pin #1 of
IC20, and it is controlled by «<PB5 AND CAS» (CAS
here is the positive signal issued by the Ula). This way,
if PB5 is 0, you always select Input A, and thus you
have the usual behaviour. When PB5 is 1, CAS controls
the multiplexer, so the Input A is still selected when a
row number is sent to the Ram chips, but Input B (0) is
selected when the column number is sent. Hey... it
might work :-)

Two potential problems:

1- When PBS5 is 1, the multiplexer is also controlled
by CAS for memory cycles of the Cpu. This means
that all accesses to a Ram location in the $8000-$FFFF
range is reduced to $0000-$7FFF, and so you can only
use the memory screen that is currently displayed (not
good for double-buffer techniques). Mhhh... if we add
Phi2 to the control logic (i.e. <PB5 AND CASAND NOT
PHI2»), we should have only the Ula memory cycles
affected. Full 64K range accessible by the Cpu, and
PB5 selects the screen displayed by the Ula, miam :-)

2- The timing waveforms of the 4164 datasheet (thanks
again, André) show that the column number should be
ready before the CAS pulse arrives. This is not the case

with the above design. | don’t know what happens if you
change the address during a CAS pulse. If the Ram chip
latches the address when the CAS pulse arrives, it might
not work... :-(Can anyone validate or invalidate this trick?

Again from Mickaél:

[Maybe we can lure the Ula in thinking it is still reading
at $A000 or $BB8O, but have an external memory
mapping...] It’s actually what I was hopping to get :)

[If you have an issue 3 board or earlier, with 8 Ram
chips, you might have noticed LK1 has two possible
settings (b-a for 16K Ram, a-c for 64K), and maybe
this is this LK1 that gave you the idea of switching
between a 16K Oric and a 64K Oric : forget about
it...] I didn’t noticed anything like this :) The idea was
just that the Ula was probably the same in the 16k and
64k machines, and so it was probably just some smart
addressing modification that makes it access in $2000
instead of $a000.

[So, you are wondering what would happen if you
changed the LK1 setting during execution?] Not
actually, since I didn’t even know what was this LK1
thing before today!

[You might love it for some screen effects, but all your
code and your data will also be reorganized...] | just
want to get the Ula tricked, not the rest of the machine :)

[A hardware mod that forces the Ula to read one of
these two screens] Keeping my breath waiting for the
revelation.

[Hey... it might work .../... Can anyone validate or
invalidate this trick?] Hum, can’t help on that. | have
«theorical» ideas of «concepts», but I’m totally unable
to do any hardware thing myself :(

Answer from Steve M.:

[The Ula doesn’t know if you have 16K or 64K, so it
always uses 8 address lines for the row and the column
specification] They did say more than once in OUM
that the 16K had a different Ula. | can confirm that
I’ve tried swapping with Ulas from Atmos and 48K
Oric-1 with no difference noticed. On the subject of
Ula design I think Dr Paul Johnson has the design etc.
Dave Dick was trying to get detail from him around
the time Mike released the Unofficial Guide, but Dr
Paul was reluctant to release information, as he didn’t
know who owned Oric. I think his place of work and
email were released in a CEO a few months back.
Perhaps someone can contact him and persuade him
to reveal some information. Even if he only reveals
part of the information we could ask for the part, which
we most need to know.

From Mike B.:

[Perhaps someone can contact him and persuade him
to reveal some information. Even if he only reveals
part of the information we could ask for the part which
we most need to know] Because there’s a big difference
between asking for the full design spec and asking a
«Do you remember if it works this way or that way?»
kind of question. You might get away with the 2nd :)

55

