
21

Software

Software compatibility between Oric and Apple 2
An article by Ventzislav T. and reactions compiled from newsgroup <comp.sys.oric> by André C.

 First of all - there is no compatibility at software level
between the Oric and the Apple 2 series of
microcomputers, but both computers share many
common specifics. Compatibility is possible between
computers with similar aspects (processor, memory
management, input-output devices etc.). In Apple 2 and
Oric there are enough common parts giving a chance
some software from the one to be converted to the other
and vice versa. At Basic and Dos levels this is easy
enough for the causal Oric/Apple 2 user to be able to
convert programs and scripts between Apple 2 and
Oric, so I won’t discuss them here. The assembly level
is the most problematic, since the Roms of both
computers are written in assembler and these machine
language programs bang the hardware directly. Here I
will mark the basis, without pretending, the given info
is fully accurate and/or descriptive, but it should be a
good start for developing on the idea.
 Before describing the question about the software
compatibility, I have to note that some differences in
the organization of the two computers sometimes
makes the conversion of programs from the one
computer to the other almost impossible. The
differences are biggest in the controls of the graphics
and sound. In the Oric, there is a special co-processor
for sound - AY-3-8912, while in the Apple 2 there is a
trigger, with which the membrane of the speaker is
moved from one to other of the two possible positions.
In the Oric, the control of the memory and the graphics
is put to the ULA (Universal Logic Array) chip, which
on the Apple 2 is different. On the Apple 2 there are 4
analog inputs, 4 digital inputs and outputs, while on
the Oric they have to be simulated by software with
the (VIA 6522). Apple 2 programs, which use the double
high resolution, and these, with requirements of extended
memory are extremely hard for conversion, due to the
different bank switching/code jumping technologies used.
 With help from the tables given below, it is possible
to convert only some assembly language programs. If
the program uses the graphical memory or sound
effects, the subroutines must be rewritten, especially
for the given case. Since the Oric does not have built-
in monitor, programs on the Apple 2, which use monitor
subroutines, have to be rewritten too. With programs
controlling the disk drive on Oric the interrupts must
be disabled (SEI), because the information written or
read can get inaccurate. Another problem is that the
Apple 2 does not have interrupts, so programs using
interrupts must have to be totally rewritten. On the
Apple 2 the control of the different modes is done by
software switches, which are missing on the Oric.
Simulation of these switches has to be done with
jumping to subroutines of the Basic interpreter, which
do almost the same. Before trying to rewrite a program
from one to the other computer you must be sure that

you know the organization of the both computers
equally well, and you can easily move from one to the
other. Despite all this, it is more reasonable for a start to
be done conversion of system tools and applications, while
games and demos are much harder (But not impossible).
 In the end I will notice that there is more point in
converting and translating programs from the Apple 2
to the Oric, since there is much less software for it.
 ZERO PAGE
 Apple Oric
———————————————————————————————
 $0A-$0C $21-$23
 $200-$2FF $35-$85
 $67-$68 $9A-$9B
 $69-$6A $9C-$9D
 $6B-$6C $9E-$9F
 $6D-$6E $A0-$A1
 $6F-$70 $A2-$A3
 $73-$74 $A6-$A7
 $75-$76 $A8-$A9
 $77-$7A $AA-$AD
 $3F5-$3F7 $2FC-$2FD
 $E4 $213
 $E0-$E1 $219
 $E2 $21A
 $36-$37 $238-$23A
 $38-$39 $23B-$23D
 $21 $257
 $24 $268
 $25 $269
 $22 $27E
 $28-$29 $19-$13
 Oric - BASIC Address
 ————————————————————————————————
 CALL - $E946
 CHAR - $F12D
 CIRCLE - $F37F
 CLEAR - $C70D
 CLOAD - $E85B
 CONT - $C9AD
 CLS - $CCCE
 CSAVE - $E909
 CURMOV - $F0FD
 CURSET - $F0C8
 DATA - $CA3C
 DEF FN - $D4BA
 DIM - $D17E
 DOKE - $D967
 DRAW - $F110
 EDIT - $C692
 END - $C973
 EXPLODE - $FACB
 FILL - $F2C8
 FOR - $C855
 GET - $CD46
 GOSUB - $C9C8
 GOTO - $C9E5
 GRAB - $E8E7
 HIMEM - $EBCE

22

 HIRES - $EC33
 IF - $CA70
 INK - $F21D
 INPUT - $CD55
 LET - $CB1C
 LIST - $C748
 LLIST - $C7FD
 LORES - $D9DE
 LPRINT - $C809
 MUSIC - $FC18
 NEW - $C6EE
 ON - $CAC2
 PAPER - $F204
 PATTERN - $F11D
 PING - $FA9F
 PLAY - $FBD0
 PLOT - $DA51
 POINT - $F1C8
 POKE - $D94F
 POP - $CA12
 PRINT - $CBAB
 PULL - $DAA1
 READ - $CD89
 RECALL - $E9D1
 RELEASE - $EC0C
 REM - $CA99
 RESTORE - $C952
 RETURN - $CA12
 RUN - $C9BD
 SHOOT - $FAB5
 SOUND - $FD40
 STOP - $C971
 STORE - $E987
 TEXT - $EC21
 TROFF - $CD10
 TRON - $CD16
 UNTIL - $DAA1
 WAIT - $D958
 ZAP - $FAE1
 ! - $CD13
 & - $DADB
 Apple 2 Oric
(Disk controller) (Disk controller)
———————————————————————————————————
 $C080 - $310
 $C081 - $311
 $C082 - $312
 $C083 - $313
 $C084 - $314
 $C085 - $315
 $C086 - $316
 $C087 - $317
 $C088 - $318
 $C089 - $319
 $C08A - $31A
 $C08B - $31B
 $C08C - $31C
 $C08D - $31D
 $C08E - $31E
 $C08F - $31F
 Apple 2(monitor) Oric
————————————————————————————————
 $ED24 $E0C5
 $FD0C $C5E8
 $FD6F $C592
 $FDED $CC9D
 $FE89/$FE93 $E93D
 $FB2F $F9C9

 $C000 $2DF
 $C010 $2DF
 $C083 $381 (With 16
 KB RAM expansion)
 Graphic memory:
Apple 2 Oric
————————————————————————————————
TEXT/LOWRES 1 $0400-$07FF $BB80-$BFE0
TEXT/LOWRES 2 $0800-$0BFF
HIRES 1 $2000-$3FFF $A000-$BFE0
HIRES 2 $4000-$5FFF
 Double text/lowres and double highres modes on the
Apple use twice amount of memory with half of that
in the standard Ram, and the other half in the extended
memory, accessed with software switches - $C000,
$C001, $C018. But I won’t describe them here.
 Note that the Apple uses different memory locations
for the TEXT/LOWRES modes, allowing easy switch
between text/graphic modes, while on the Oric, the
graphic and text modes overlap each other, and if you
need to save the text while switching to HIRES, you
need to copy the screen data, and later sending it back,
after switching again to TEXT, if there is a demand for
save of the text on the screen. Also the Apple 2 have
two pages for each mode, which are easily switched
between each other ($C051 for first page, $C052 for
second page), with just one read/write to the software
switches, making it easy for double buffered animation,
while the Oric needs copying of data to the graphic
memory, thus slow. Organization of the graphic
memory is different too. On the Apple 2, the first row
of text/graphic is on address $0400-$0427/$4000-
$4027, but the second is on $0480-$04A7/$4080-
$40A7, the third $0500-$527/$4100-$4127 etc. i.e.
non-linear, while on the Oric the first row is $BB80/
$A000, the second is on $BBA8/$A0A8 etc. i.e. linear.
 Producing sound on the Apple 2 is done by accessing
the $C030 memory cell, which is software switch,
forcing the sound membrane to move. Reading/writing
this switch with different frequency produces sounds
with different pitch, and this is all you need to know
about the Apple 2 sound capabilities. Needless to say -
this takes all the CPU resources, while on the Oric you
just can program the AY-3-8912 for the job, but you
are not able to do it directly, which makes sound
converting little more complex. The easier way is to
use the PLAY subroutine from the Rom.
 That’s about the theoretical part. Now some
explanations how to use this in practise. The hardest
way is to directly disassemble the program on your
Oric/Apple 2 and then start rewriting it on the opposite
platform, taking in account whenever the code use
hardware/ROM specific routines, rewriting them for
the target. Problems will arise when you replace
routines containing access to software switches, which
will obviously be more/less bytes. If it is less that’s
easy - just fill the unused bytes with NOPs, but if it is
more, that will make non-relocatable code really hard
to translate and the mess will raise fast.
 More easier is to write a library (or second Rom),
which contains the most used subroutines of the source
platform rewritten for the target platform and a program
which checks if the translated code makes jump to these

23

routines and if so, to replace this with jump to the
library (This program can be written on any computer
platform). This way you replace 2 bytes with 2 bytes.
Second - check if the program uses the software switches,
and replace these routines with your own routines, which
can be in the library too, which is the better choice and
keeps the code size too. Third - check if the program
attempts to self modify/makes direct jumps in own code
or some other relocatable unfriendly code and replace
this code with indirect jumps, non self modifying code
etc.., so it will work on the target platform from
different address. All this can be done by a program
(Not by hand).
 Another bet is writing a software simulator, which
starts the program in it’s native unchanged form, from
the source platform, on the target platform. While
executing a program, the simulator checks if there is a
hardware specific code and replaces it with own code
and then jumps to the next opcode, this done by
interrupt routines. With this, you can execute Apple 2
programs directly on the Oric, without modifying them,
thus not violating their copyright.
 For native Basic programs - interpreter of Applesoft
Basic on the Oric and Oric Basic interpreter on the
Apple 2 is a reasonable choice too.
 For an end, I will say that I really would love to have
SWEET 16 on the Oric. 2003 © by Ventzislav T. Any
comments/corrections/additions/flames etc.. will be
appreciated. Thanks in advance.
Fabrice F.: Thanks a lot, Ventzislav, that is definitely
useful. I’m sure Sweet16 wouldn’t be too hard to port
on the Oric... If I help you porting it, would you help
me port Sargon III and Robot Odissey ?-)
Ventzislav T.: [Sweet16] As I stated in the article, for a
start it’s better to begin with applications software,
because they mostly use the processor, rather than
fancy graphic and sound effects. The Sweet16 source
code was available on the Merlin assembler disk, but I
do not have it anymore. With having the original source
core, the port is even easier. [port Sargon III and Robot
Odissey] I am doing a research on the most used sound
and graphic routines on the Apple 2 and about their
equivalents on the Oric. With the sound, there are not
as many problems as with the graphic. The Apple 2
monochrome highres mode is 280/192 pixels, while
on the Oric the graphic is 240*200 (no difference
between monochrome and colour), but if you interpret
the Apple 2 display as colour, the resolution is 140/
192, which is still the same even in double highres,
but there are 4bits per colour pixel (16 colours total)
in the double highres. So far, the Apple 2 displays 7
bits/pixels per byte (40*7=280), while the Oric only 6
bits/pixel per byte (40*6=240). Two possible
compromises are interpreting the Apple 2 graphics as
colour and try to implement them as colour on the Oric
too, or omitting 1 pixel per byte on the Oric graphics
display and not using any colour, with directly writing
the graphic bytes to the video memory. The first is
preferable, because then you can have the whole picture,
without crushing the display, but it is harder to implement

too. The LOWRES modes (GR and GR2 on the Apple 2)
are easy to simulate by using the mosaic characters present
in the Oric. Later I will do another comparison table for
Apple 2 characters in the lowres and Oric mosaic
equivalents.
Kamelito: What we need first IMHO, is a good 6502
interactive decompiler for the Apple2. Once you have
the Apple2 binary, the decompiler (sourcer,
disassembler...) will produce an ASM file and it would
be then easier to port an Apple2 software on the Oric.
The decompiler should replace access to the Rom or
Apple Hardware with label for a better understanding
of the source. If in plus it could recognize graphics,
etc that would be perfect, like the Atari interactive
disassembler <http://ourworld.compuserve.com/
homepages/ebacher/>. This disassembler could also
recognize Oric specificity to port Oric software to the
Apple2. I look on the Internet and was not able to find
such a program. .../... Oops, I just noticed will not trying
it that the Atari interactive disassembler also support
the Oric, any chance to add the Apple2?
Fabrice F.: [Sweet16 source code] Perhaps Carsten has
this source code? I think he said there was an article
about Sweet16, written by Steve himself... .../... Well,
now I remember Carsten indeed posted the disassembly
of the 300 bytes of Sweet16... <http://www.gno.org/
pub/apple2/doc/hardware/motherboards/sweet16.txt>.
 The only problem is that most of the 32 first bytes of
page 0 are already used on the Oric... However, there
is a contiguous area for 32 zeropage-bytes : in the entry
buffer ($35-$84), so it should be rather easy to port
it... For example, just say that:
R0L EQU $60
R0H EQU $61
R14H EQU $7D
R15L EQU $7E
R15H EQU $7F
Now you just need a SAVE and a RESTORE routine,
but if you want the best compatibility, you just need to
change the ones found in the Apple2 Rom with Oric-
compatible zeropage locations:
SAVE: sta $80

stx $81
sty $82
php
pla
sta $83
tsx
stx $84
cld
rts

RESTORE: lda $83
pha
lda $80
ldx $81
ldy $82
plp
rts ; well, S is not restored in this

Apple2 routine.
That is it, Sweet16 on the Oric... Do you have any
Sweet16 application to run? Cheers, Fabrice

